Microphysical aerosol parameters from multiwavelength lidar.

نویسندگان

  • Christine Böckmann
  • Irina Mironova
  • Detlef Müller
  • Lars Schneidenbach
  • Remo Nessler
چکیده

The hybrid regularization technique developed at the Institute of Mathematics of Potsdam University (IMP) is used to derive microphysical properties such as effective radius, surface-area concentration, and volume concentration, as well as the single-scattering albedo and a mean complex refractive index, from multiwavelength lidar measurements. We present the continuation of investigations of the IMP method. Theoretical studies of the degree of ill-posedness of the underlying model, simulation results with respect to the analysis of the retrieval error of microphysical particle properties from multiwavelength lidar data, and a comparison of results for different numbers of backscatter and extinction coefficients are presented. Our analysis shows that the backscatter operator has a smaller degree of ill-posedness than the operator for extinction. This fact underlines the importance of backscatter data. Moreover, the degree of ill-posedness increases with increasing particle absorption, i.e., depends on the imaginary part of the refractive index and does not depend significantly on the real part. Furthermore, an extensive simulation study was carried out for logarithmic-normal size distributions with different median radii, mode widths, and real and imaginary parts of refractive indices. The errors of the retrieved particle properties obtained from the inversion of three backscatter (355, 532, and 1064 nm) and two extinction (355 and 532 nm) coefficients were compared with the uncertainties for the case of six backscatter (400, 710, 800 nm, additionally) and the same two extinction coefficients. For known complex refractive index and up to 20% normally distributed noise, we found that the retrieval errors for effective radius, surface-area concentration, and volume concentration stay below approximately 15% in both cases. Simulations were also made with unknown complex refractive index. In that case the integrated parameters stay below approximately 30%, and the imaginary part of the refractive index stays below 35% for input noise up to 10% in both cases. In general, the quality of the retrieved aerosol parameters depends strongly on the imaginary part owing to the degree of ill-posedness. It is shown that under certain constraints a minimum data set of three backscatter coefficients and two extinction coefficients is sufficient for a successful inversion. The IMP algorithm was finally tested for a measurement case.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 2: simulations with synthetic optical data.

We developed a mathematical scheme that allows us to improve retrieval products obtained from the inversion of multiwavelength Raman/HSRL lidar data, commonly dubbed "3 backscatter+2 extinction" (3β+2α) lidar. This scheme works independently of the automated inversion method that is currently being developed in the framework of the Aerosol-Cloud-Ecosystem (ACE) mission and which is successfully...

متن کامل

Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis.

The multiwavelength Raman lidar technique in combination with sophisticated inversion algorithms has been recognized as a new tool for deriving information about the microphysical properties of atmospheric aerosols. The input optical parameter sets, provided by respective aerosol Raman lidars, are at the theoretical lower limit at which these inversion algorithms work properly. For that reason ...

متن کامل

Effects of systematic and random errors on the retrieval of particle microphysical properties from multiwavelength lidar measurements using inversion with regularization

In this work we study the effects of systematic and random errors on the inversion of multiwavelength (MW) lidar data using the well-known regularization technique to obtain vertically resolved aerosol microphysical properties. The software implementation used here was developed at the Physics Instrumentation Center (PIC) in Troitsk (Russia) in conjunction with the NASA/Goddard Space Flight Cen...

متن کامل

Retrieval of spatio-temporal distributions of particle parameters from multiwavelength lidar measurements using the linear estimation technique and comparison with AERONET

The results of the application of the linear estimation technique to multiwavelength Raman lidar measurements performed during the summer of 2011 in Greenbelt, MD, USA, are presented. We demonstrate that multiwavelength lidars are capable not only of providing vertical profiles of particle properties but also of revealing the spatio-temporal evolution of aerosol features. The nighttime 3β + 1α ...

متن کامل

Retrieval of aerosol parameters from multiwavelength lidar: investigation of the underlying inverse mathematical problem.

We present an investigation of some important mathematical and numerical features related to the retrieval of microphysical parameters [complex refractive index, single-scattering albedo, effective radius, total number, surface area, and volume concentrations] of ambient aerosol particles using multiwavelength Raman or high-spectral-resolution lidar. Using simple examples, we prove the non-uniq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the Optical Society of America. A, Optics, image science, and vision

دوره 22 3  شماره 

صفحات  -

تاریخ انتشار 2005